In contrast, with one exception, no other ST was seen in more than one host or geographic location. The exception was ST11, which was seen in both USA and Belgium. These observations
suggest NVP-BSK805 that ST1 is the most ancestral ST in the data set [83, 84], and also possibly a generalist, with the ability to infect different hosts and tissue types. Genomic comparisons showed that strain FSL S3-227 shared multiple mobile genetic elements with S. agalactiae and S. dysgalactiae subsp. dysgalactiae strains isolated from the bovine environment, with one of these elements (the ICE) showing high sequence divergence. Although the ICE contained the Lac.2 operon, suggesting that this LGT may have contributed to bovine adaptation, the high divergence and multiple additional LGTs suggest that S. canis ST1 may have had an extended association with the bovine environment, arguing against more recent adaptation. Consequently, if ST1’s lineage has possessed the ability to infect cows for an extended period of time, and is also the most ancestral with all lineages having descended from it, in order for the ST14 lineage to have recently acquired find protocol the ability to infect cows, all lineages intermediate between ST1 and ST14 must have previously lost this ability. This might have occurred as a single event on the branch connecting CC3 to ST8. Alternatively, all strains are generalist and the more recent
lineages have simply had insufficient time to encounter the bovine environment and/or that our sample size was too low to detect their presence. The distribution of the plasmid provides yet
another perspective. The plasmid has only been observed in one additional species: S. agalactiae (strain FSL-S3026 [isolated from a bovine host], and strain NEM316 [potential association with the bovine environment]). Therefore, it is possible that the plasmid was exchanged between S. canis and S. agalactiae in the bovine environment, however, the plasmid appears randomly distributed among S. canis isolates, regardless of host species or ST. For example, (i) a Fisher exact test showed no significant difference in its distribution between bovine and canine isolates (P = 1.0), (ii) it was Fenbendazole present in all clonal complexes and clusters, and (iii) it was present in all three hosts including a wide range of canine tissue types (vaginal, ear, throat, lip). Consequently, the plasmid appears to have moved freely between bovine and canine environments, supporting the generalist argument. An alternative explanation is that S. canis may have obtained the plasmid on independent occasions from one or more different hosts. A similar process involving various mobile genetic elements has been observed for various Streptococcus species [17, 85, 86]. Conclusion Characterization of the genome sequence for S. canis strain FSL S3-227 detected a high diversity of virulence factors.