(C) 2011 IBRO Published by Elsevier Ltd All rights reserved “

(C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Age-related impairment in synaptic plasticity, like long-term potentiation (LTP), has been repeatedly reported. We had shown that late stages of LTP in the rat dentate gyrus can be modulated by emotional factors, but this is impaired by aging. In the present study we have searched for possible impairments in emotional and spatial memory tasks that may correspond to the impaired reinforcement observed at the cellular level. We have trained young and aged animals in JAK inhibitor a battery of tests: exploration (open field) object recognition, anxiety (plus

maze) fear conditioning and spatial memory (Morris’ water maze (MWM)). The open field, anxiety, and novelty recognition showed no age differences except a reduced velocity in aged rats. Emotional and contextual memories were preserved, but acquisition was slightly impaired. Age-dependent impairments appeared in spatial memory, evaluated in terms of latency and

distance to reach the hidden escape platform in the water maze task, but these were not related with impairments in other tests, in particular there was no relation between spatial and emotional memory impairments. Age-related impairments in different paradigms were caused by different independent factors that did not correlated with each other. (C) 2011 IBRO. Published by Elsevier Cyclopamine mouse Ltd. SDHB All rights reserved.”
“Peripheral sensory neurons respond to stimuli containing a wide range of spatio-temporal frequencies. We investigated electroreceptor neuron coding in the gymnoti-form wave-type weakly electric fish Apteronotus leptorhynchus. Previous studies used low to mid temporal frequencies (<256 Hz) and showed that electroreceptor neuron responses to sensory stimuli could be almost exclusively accounted for by linear

models, thereby implying a rate code. We instead used temporal frequencies up to 425 Hz, which is in the upper behaviorally relevant range for this species. We show that electroreceptors can: (A) respond up to the highest frequencies tested and (B) display strong nonlinearities in their responses to such stimuli. These nonlinearities were manifested by the fact that the responses to repeated presentations of the same stimulus were coherent at temporal frequencies outside of those contained in the stimulus waveform. Specifically, these consisted of low frequencies corresponding to the time varying contrast or envelope of the stimulus as well as higher harmonics of the frequencies contained in the stimulus. Heterogeneities in the afferent population influenced nonlinear coding as afferents with the lowest baseline firing rates tended to display the strongest nonlinear responses. To understand the link between afferent heterogeneity and nonlinear responsiveness, we used a phenomenological mathematical model of electrosensory afferents.

Comments are closed.