Discussion A previous study indicated that Z mobilis ZM4 hfq was

Discussion A previous study indicated that Z. mobilis ZM4 hfq was less abundant in aerobic, stationary phase fermentations compared to the equivalent anaerobic condition and that rpoH was induced under the aerobic condition [14]. The role of Z. mobilis regulators like Hfq and extent of cross

talk between regulatory networks remains to be elucidated. This study indicated that hfq also plays a role in Z. mobilis resistance to both acetate (sodium acetate, potassium acetate, or ammonium acetate) Baf-A1 and sodium ions (sodium chloride and sodium acetate) (Table 2; Fig. 1). A recent study has identified that nhaA overexpression (encoding a sodium-proton antiporter) conferred the previously reported AcR (sodium acetate tolerant) mutant phenotype [32]. Constitutive nhaA over-expression

in strain AcRIM0347 (hfq -) is a likely possibility MM-102 order for it being unable to survive with 195 mM ammonium acetate or potassium acetate, while the same concentration of sodium acetate only partially repressed its growth. hfq or nhaA each contribute to sodium acetate tolerance (Table 2; Fig. 1C) [32], but there is no additive benefit for increased inhibitor tolerance for hfq and nhaA if both were over-expressed at the same time (data not shown). In addition, the overexpression of nhaA gene in Z. mobilis had no advantage over other physiological stress responses for model pretreatment inhibitors such as vanillin, furfural, and HMF [32]. While Z. mobilis hfq contributes to the tolerance of these inhibitors as shown by increased hfq mutant AcRIM0347 lag phases and slower growth rates during early logarithmic growth phase compared to AcR strain (Fig. 2). These separate studies indicate there may often be more than one pathway for industrial strain development. The majority of proteins similar to Z. mobilis Hfq contained one Sm-like superfamily domain (Additional file

3), with the exception of those Thiamet G from six other species also within the Sphingomonadales. Future structural studies are required to define the role for Z. mobilis and other microorganisms with two Sm-like family domains, to elucidate Hfq subunit interactions, and to test whether only three Hfq proteins would be needed for Z. mobilis to form the active homo-hexameric ring structure. We assayed growth phenotypes for S. cerevisiae Lsm protein mutant and overexpression phenotypes. Lsm1, 6, and 7 mutants showed reduced tolerance to acetate and other pretreatment inhibitors (Additional file 3). The S. cerevisiae Lsm over-expression studies showed these SB431542 price strains had increased acetate and HMF resistance compared to the wild-type strain, while the overexpression strains were more inhibited under vanillin stress conditions (Additional file 3). The conserved nature of Sm-like proteins, the involvement of ZM4 Hfq and S.

Comments are closed.