Figure 1 shows the schematic presentation of the functionalization of MWCNTs and the coupling of CdSe nanoparticles with MWCNTs. Figure 1 Schematic presentation of the functionalization of fullerenes and the coupling of CdSe nanoparticles with fullerenes. Synthesis of CdSe-C60/TiO2 composites CdSe-C60 was prepared using pristine concentrations of TNB for the preparation of CdSe-C60/TiO2 composites. CdSe-C60 powder was mixed with 3 mL TNB. The solutions were homogenized under reflux at 343 K for 5 h while being stirred in a vial. After stirring, learn more the solution transformed to CdSe-C60/TiO2 gels and was heat-treated at 873 K to
produce the CdSe-C60/TiO2 composites. Characterization X-ray diffraction (XRD; Shimadzu XD-D1, Uki, Kumamoto, Japan) was used to identify the crystallinity of the composite with monochromatic high-intensity Cu Ka radiation (l = 1.5406 Å). Scanning electron microscopy (SEM; JSM-5600, JEOL Ltd., Tokyo, Japan) was beta-catenin inhibitor used to observe the surface state and structure of the prepared composite using an electron microscope. Transmission electron microscopy (TEM; JEM-2010, JEOL Ltd.) was used to determine the state and particle size of the prepared composite.
TEM at an acceleration voltage of 200 kV was used to investigate the number and the stacking state of graphene layers on the various samples. TEM specimens were prepared by placing a few drops of sample solution on a carbon grid. The elemental mapping over the desired region of the prepared composite was determined by an energy dispersive X-ray spectroscopy (EDX) analyzer attached to the SEM. UV-visible (vis) diffuse reflectance spectra were obtained using a UV–vis spectrophotometer (Neosys-2000, Scinco Co. Ltd., Seoul, Korea) using BaSO4 as a reference at room temperature aminophylline and were converted from reflection to absorbance spectra by the Kubelka-Munk method. Photocatalytic degradation of dyes Photocatalytic activity was evaluated by dye degradation in aqueous media under visible-light irradiation. For visible-light irradiation, the reaction beaker was located axially and held in a visible lamp box (8 W, halogen lamp, KLD-08 L/P/N, Korea). The luminous efficacy of the lamp was 80 lm/W,
and the wavelength was 400 to 790 nm. The lamp was located at a distance of 100 mm from the aqueous solution in a dark box. The initial concentration of the dyes was set at 1 × 10−5 mol/L in all experiments. The amount of photocatalytic composite used was 0.05 g/50-mL solution. The reactor was placed for 2 h in the dark box to make the photocatalytic composite particles adsorb as many dye molecules as possible. After the adsorption phase, visible-light irradiation was restarted to make the degradation reaction proceed. To perform dye degradation, a glass reactor (diameter = 4 cm, height = 6 cm) was used, and the reactor was placed on the magnetic churn dasher. The suspension was then irradiated with visible light for a set irradiation time.