Strikingly, some proteins do not use the classical secretory path

Strikingly, some proteins do not use the classical secretory pathway and many probably play additional roles once secreted. Collectively, these data lead to novel hypotheses

concerning both the pathogenic role of secreted proteins and the secretion pathway in trypanosomatids, providing insight into the complex survival strategy of T. brucei. Methods Ethical statement: all the experiments on animals reported in this article were performed according to internationally recognized guidelines; the experimental protocols were approved selleck by the Ethical Committee on Animal Experiments and the Veterinary Department of the Centre International de Recherche Agronomique pour le Développement (CIRAD), Montpellier-France. No experiment was performed on human. Rats Male Wistar rats (6-12 weeks old) were purchased from Charles Rivers (France). Parasites Feo [72, 73], OK [73] and Biyamina [74] parasite bloodstream strains were used for the experiment. The parasites were intraperitoneally injected into rats. When IWR-1 mw their multiplication reached the logarithmic growth stage,

the parasites were purified from blood by chromatography on a DEAE (diethylaminoethyl) cellulose column, as previously described [75]. After elution, the parasites were washed three times in sterile phosphate-buffered saline (PBS) solution. This resulted in a complete elimination of the rat blood proteins. Excreted/secreted protein (ESP) production The parasites were resuspended at a concentration of 200.106 cells/ml in a secretion buffer (Ringer lactate, glucose 0.6%, Kcl 0.4%, NaHCO3 0.125%, polymixin B 5 μg/ml, L-glutamine 2 mM, MEM nonessential amino acids, pH 8) [76]. The secretion of ESPs was performed at 37°C/5% CO2 for 2 h. At the end of the HSP90 experiment, the reaction was stopped by centrifugation of parasites at 4°C, 1000 g for 10 min. The supernatant was collected and filtered on a 0.2-μm filter and immediately mixed with a protease inhibitor mix. ESPs were concentrated by ultrafiltration using a PM – 10-kDa membrane (Amicon). The

protein concentration was determined by the Bradford dye binding procedure (Bio-Rad). Concentrated ESPs were analyzed further by SDS- and BN-PAGE and visualized after staining with coomassie blue. Apoptosis assay The percentage of apoptotic parasites was quantitated every 15 min by flow cytofluorometric analysis using the DNA intercalant propidium iodide (IP), as recommended by the manufacturer (Immunotech, Marseille, France). Cells were immediately analyzed with a FACScan (fluorescence-activated cell sorting) flow cytometer (BGB324 ic50 Becton Dickinson, Ivry, France) using an argon-ion laser. Parasite viability, determined every 15 min, remained constant for 2 h and was more than 95%. Moreover, cellular integrity was controlled by microscopic examination of aliquots of the incubation medium during the 2-h period of trypanosome incubation.

Comments are closed.