Thus, we asked whether α-syn pffs, formed from purified recombinant human WT α-syn (α-syn-hWT), recruit endogenous α-syn into pathologic, insoluble inclusions. We show that α-syn pffs are internalized and induce endogenous α-syn expressed in primary neurons to aggregate into inclusions resembling LBs and LNs in human
this website PD brains. LN-like accumulations are initially detected in axons and α-syn pathology then propagates to the cell body where LB-like inclusions develop. Formation of these PD-like α-syn LNs and LBs causes selective reductions in synaptic proteins, and progressive impairments in neuronal network function and excitability that culminate in neuron death. To determine whether exogenous human α-syn pffs can seed recruitment of endogenously expressed mouse α-syn into insoluble LB-like and LN-like fibrillar aggregates, we added α-syn pffs generated from full-length recombinant α-syn-hWT to primary hippocampal neurons derived from WT C57BL6 mice after culturing them for 5–6 days in vitro (DIV). These neurons were examined 2 weeks after the addition of α-syn-hWT pffs, when synapses are mature, and α-syn is normally localized to presynaptic terminals Fluorouracil supplier (Murphy et al., 2000). In PBS-treated hippocampal neurons, endogenous mouse α-syn localized to presynaptic puncta as visualized
using monoclonal antibody (mAB) Syn202, a pansynuclein antibody (Giasson et al., 2000) (Figure 1A, top panels). In contrast, in α-syn-hWT pff-treated neurons, α-syn did not localize to the presynaptic terminal (Figure 1A), but instead formed fibrillar LN-like inclusions. To determine whether the α-syn aggregates were detergent insoluble, PBS and α-syn-hWT pff-treated neurons were extracted with buffer containing 1% Triton X-100 (Tx-100) during fixation. Under such conditions, endogenous α-syn within neuronal processes in PBS-treated neurons was soluble in
Tx-100, but cells incubated with α-syn-hWT pffs showed Tx-100-insoluble aggregates (Figure 1A). α-syn recruited into pathologic inclusions undergoes extensive phosphorylation at Ser129 (pSer129); thus antibodies against pSer129 selectively recognize α-syn pathology Oxymatrine (Fujiwara et al., 2002). Furthermore, as this modification is absent in recombinant α-syn pffs (Figure 1B, first lane on left, Luk et al., 2009), the accumulation of phosphorylated α-syn (p-α-syn) reflects an intracellular modification. PBS-treated neurons did not show staining with 81A, a mAB specific for pSer129 (Figure 1C, Waxman and Giasson, 2008). However, neurons treated with α-syn-hWT pffs showed intense 81A immunostaining that was Tx-100 insoluble (Figure 1C). Pff-induced aggregates exhibited morphologies ranging from small puncta to LN-like inclusions of variable lengths within neurites (Figures 1C, 1D, 2, and Figure 4, Figure 5, Figure 6 and Figure 7). Within neuronal perikarya, these α-syn accumulations resembled LBs observed in human PD brains (Figure 1C inset).